NGS in routine HIV-1 resistance diagnostic frequency of additional resistance relevant mutations in 2% and 1% population proportions correlated to viral load and additional patient follow-ups

Martin Obermeier, Robert Ehret, Marcel Schütze

MIB Medizinisches Infektiologiezentrum Berlin, Contact: Obermeier@mvz-mib.de

BACKGROUND

The technologies of next generation sequencing (NGS) have made their way into routine diagnostics in HIV-1 resistance testing. The report of mutations of at least 10% of the viral population is chosen by many laboratories due to its equivalency to Sanger sequencing minority detection. The relevance of mutation detected in lower frequencies is still a subject of debate. Clinical data is rare. We here report the frequency of additional resistance relevant mutations in population proportions of greater than 2% and greater than 1% in routine laboratory testing of HIV-1 Protease and Reverse Transcriptase resistance testing and correlate them to viral load. Therapy implications for patients with relevant minor viral populations were monitored.

METHODS

All HIV-1 resistance tests of the reverse transcriptase Inhibitors (RTI) and protease Inhibitors (PI) performed with an in house PCR followed by NGS (Illumina MiSeq, sequences reported with >100 reads only in seven steps with more than 1%, 2%, 5%, 10%, 15%, 20% and 30% proportion of the population) between 10/2014 and 04/2016 were analyzed. Sequences were interpreted with the HIV-GRADE online tool (http://www.hiv-grade.de) for resistance mutations using 10%, 2% and 1% minority cut-offs. Besides the overall increase in mutations, a specific focus laid on differences in reported resistance associated mutations and resistance levels (e.g. additional drug class or further drugs same class). The proportion of subpopulations harbouring additional mutations with greater than 1000 and 2000 c/mL(= mutational load) were calculated, therapy data and follow up for those patients was monitored as far as available.

RESULTS

Table 1: Samples with additional mutations >2% causing at least for one drug one step up in resistance interpretation and having mutational loads above 1.000 or 2.000 copies per mL sorted to drug-classes with therapy data and follow-up

	ID	sub- type	VL [c./mL]	PI- RAM	additional PI-RAM	PI more	NRTI- RAM	additional NRTI-RAM	NRTI more	NNRTI- RAM	additional	NNRTI more	VL in minority	date RA	therapy RA	follow-up
ł	>% populatio		[100]	[10]	[02]	[02]	[10]	[02]	[02]	[10]	[02]	[02]	[02]			
	10426285		3200000			0			0		V90I	1		10.06.15	no therapy	TDF/FTC, RAL VL 320.000 RA 12/16 106I, 184V
	10425535	D	590000		G48CDEWY, I50GSV, F53FL, I54LPT, A71V	6			0			0	11800	08.06.15	no therapy	TDF/FTC, DRV/c 12/15, success
n	10480657	В	480000		E35G	1			0		K103N	1	9600	04.01.16	no therapy	TDF/FTC, DTG success
	10379553	В	400000			0			0		Y318F	1	8000	03.12.14	pause	3TC/ABC/DTG success
	10502043	RF01_A	398000	H69K	H69K	0			0		V106I, V189I	2	7960	31.03.16	no therapy	TDF/FTC, RAL success (with blips)
	10393031	В	390000			0	M184MV	K70R, M184V	1	E138AE	E138A	0	7800	02.02.15	TDF/FTC/RPV	no change no INI-RAM (compliance?)
	10387025	В	280000		K20R	1			0		K103N	1	5600	12.01.15	no therapy	TAF/FTC/EVG/c success
	10379550	В	260000			0			0		Y318FL	1	5200	03.12.14	no therapy	TDF/FTC, RAL success
	10494842	В	112000			0			0		V106I	1	2240	26.02.16	no therapy	TDF/FTC/EVG/c success
	10409027	В	96000			0			0		V189I	1	1920	07.04.15	no therapy	nd after RA
	10414003	В	85000			0			0		V189I	1	1700	23.04.15	no therapy	TDF/FTC, DTG success
	10491937	В	85000			0			0		E138G	1	1700	15.02.16	no therapy	TDF/FTC, DRV/r success
	10430389	A	76000	H69K	V11I, K20EIV, D30EGKNRS, V32EIK, H69K	5			0			0	1520	29.06.15	no therapy	no therapy
	10438499	В	74000			0		M41L	1			0	1480	28.07.15	pause	TDF/FTC, DTG success (with breaks)
	10481467	В	66000			0			0		E138K	1	1320	06.01.16	no therapy	3TC/ABC/DTG success
	10388791	В	57683			0			0		E138K	1	1154	16.01.15	no therapy	TDF/FTC/RPV success

Fig. 1: No resistance-relevant mutations with different cut-offs

Fig. 2: Resistance interpretation with different cut-offs sorted by drug-classes

RESULTS

In the evaluation period, we performed 645 NGS resistance tests. 483 (74,9%) of the sequences were identified as subtype B. No drug resistance associated mutations were reported by HIV-GRADE for 284 (44%) sequences with a cut-off of 10%, 190 (29,5%) and 127 (19,7%) with cut-offs of 2% and 1% respectively (s. Fig 1). With a cut-off of 10% in 148 samples (105 of them with a non-B subtype) only PI relevant mutations could be detected, 21 samples with only NRTI and 100 samples with only NNRTI mutations. Regarding the resistance level the same drift could be observed, a loss of wild type status (shown in darker green in Fig. 2) lowering the cut-off to 2% and 1%. The increase of resistance when lowering the cut-off could be shown for all drug classes with the highest proportions in the NNRTI drug-class (Fig. 2). At a minority cut-off of 2% we detected mutations in 94 more samples as compared to a cut-off of 10%, 39 of them or 41% with a mutational load above 2.000 c/mL and 70 > 1.000 c/mL (74%). The number with additional mutations utilizing a cut-off of 1% increased to 157 samples. Tab 1 summarizes 16 patients that showed additional mutations at 2% cutoff, 9 with a mutational load of > 2.000 c/mL and 7 with > 1.000 c/mL. The mutations resulted in a higher resistance classification by HIV-GRADE for at least one drug. Mutations, viral loads, therapies and follow-up data are listed. We could not document an influence of minority populations on therapy choice or outcome.

CONCLUSIONS

A relative high proportion (56%) of investigated sequences showed resistance mutations at a minority cut-off of 10%. This high percentage of resistance increases substantially lowering the cut-off range to 2 or 1% not only by number of mutations but also regarding resistance-levels. Relevance of mutations in these low percentages is often discussed. The concept of "mutational load" tries to correlate the viral load with the proportion of mutation in the whole viral population. Despite the low percentage these viral quasispecies (above 2%) can be detected in relevant absolute quantities (41% >2.000 c/mL and 74% >1.000 c/mL) which increases the probability that these mutations represent viable resistant virus. Our data pool, especially in the number of therapy follow up is to small to recognize an influence on therapy outcome. Another limitation of this observation is the missing of data for Integrase resistance because many (firstline-) therapies include Integrase inhibitors meanwhile (s. Tab 1). Developments in this direction should be included in the future.

There is still a clear need for clinical evaluation of the relevance of mutations in the low percentage range for resistance interpretation due to its broader use in clinical routine.

Medizinisches Infektiologiezentrum Berlin

